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Abstract:  There is a classical effect on acoustic waveform when the sound propagates through a nonlinear medium. The 

motivation of this work was to experimentally verify and further study the phenomena of nonlinear waveform distortion. 

Measurements were conducted in water with a 0.5" -diameter unfocused transducer, working at 3.5-MHz peak frequency as a 

source. We use a membrane hydrophone with an active sensor diameter of 0.2mm with a frequency response 1-30MHz as a 

detector. Amplitudes of fundamentals and harmonics are measured, and hence nonlinearity of the medium is determined. The 

experimental results agreed with the modeling based on the Khokhlov Zabolotskaya Kuznetskov (K.Z.K.) equation. 

 

Index Terms - Ultrasonics, Nonlinear medium, Waveform distortion, K.Z.K. Equation, Experimental harmonic detection. 

I. INTRODUCTION 

 

Linear acoustics has explained in detail different phenomena like propagation, reflection, transmission, refraction, diffraction, 

absorption, and dispersion. But our understanding of nonlinear acoustics is quite limited; although nonlinear acoustics has 

developed in the past 40 years, the field itself is old, and its development has continued for the last 200 years. There are two main 

reasons. First, ordinary linear acoustics does an outstanding job of explaining most of the acoustical phenomena; that's why the 

necessity of nonlinear acoustical theory did not arise. The second cause is nonlinear mathematics necessary to describe the finite-

amplitude sound is very difficult to handle. Because of the efforts of Burgers, Hopf, Cole, and Lighthill, the once-challenging 

problem of finite amplitude propagation in dissipative fluids is no longer a mystery. And thanks to Westervelt, Khokhlov, 

Zabolotskaya, Kuzenetskov, Beyer, Blackstock, and Hamilton — who have opened the door. 

 

II. THEORY 

 

2.1 Origin of Nonlinearity 

 

Here, , denotes the speed of propagation of the wave. is the small signal sound speed, 𝑢 is the velocity of fluid particles, and 

𝛽 is the nonlinearity coefficient. As a result, the wave gets distorted during propagation. The factor  determines this distortion, 

called the nonlinear parameter (Blackstock, 2000, Hamilton, 1998). 

 

2.2 Nonlinear parameter   

We express the pressure amplitude  in terms of  as 

 

 

where,  and  . 

 

 2.3 Conservation Laws 

 

 (Mass Conservation) 

  (Momentum Conservation) 

III. MODEL EQUATION  

If we consider viscous effects due to the medium of sound propagation, the momentum equation will look like this — 

  (1) 

Where  

              (2) 
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 =pressure tensor where , and  = viscous-stress tensor where 

 

 

 

Now suppose any field variables ,  and  can be expressed by the unperturbed values,  and  with their higher order 

perturbations as 

 

 

Here we assumed the velocity of the unperturbed fluid is zero ie . All those substitutions in equations(1) & (3) will give the 

first-order correspondence- 

 

  

If we use the expression of  from equation (4), we can eliminate vi from these equations, and finally, we can get after time 

derivative of equation(8) and divergence of equation(9), respectively, for the 1st-order pressure field result — 

 

 

Where,  , , and  being the shear and bulk viscosities, respectively. If we don't consider any viscous 

contribution in this equation, the equation will give the form of a plain wave equation of 1st order. and i.e., 

 

 

 

For the 2nd-order case, we obtain the following equations  

 

 

  

Here For ideal gas (where ),  

The corresponding wave equation for  is 
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Now, if we set the following transformations 

 

 

 

Equation (16) will change into: 

 

IV. QUASILINEAR SOLUTION 

The governing equation 

 

 

 

It's evident in the above that the 1st order wave solution of the nonlinear medium appears as a contributing source of 

secondary wave  and so on for other solutions. 

Equation(6) can be rewritten as 

 

 

 

Where is time retarded greens function. And the time retarded solution will be 

 

 

 

 

Therefore 

 

 

And finally 

 

 

Where . 

V. PARAMETRIC ARRAY  

 

We can consider first-order pressure  consists of two harmonic components,  and with frequencies 𝜔𝑎 and 𝜔𝑏. Pressure 

𝑃1 then 

       

Where  is the complex conjugate of  Then if we express the solution  of the equation - that corresponds to the 

frequency  as , the equation for  is 

 

 

where  and . 
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For two plane waves traveling in the same direction along the 𝑥 axis, we have  and  where 𝐴 and 

𝐵 are real. Then the equation for is 

 

 

The particular solution, for the plus sign, is 

 

 

where 𝑣𝑎 and 𝑣𝑏 are the velocity amplitudes of the two primary waves. 

VI. KZK EQUATION 

  

The nonlinear acoustical field radiated by a circular piston source can be modeled (Lee, 1995) by the simplest nonlinear 

Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, including combined effects of attenuation and diffraction. KZK equation 

can be expressed in terms of the axial component as: 

 

Here,  is the particle velocity, is the retarded time,  is the ambient density,  is the nonlinear parameter, and  is 

the dissipative parameter of the medium.  is the transverse Laplacian, and 𝑟 is the lateral coordinate (distance 

from the axis of symmetry). Weak finite amplitude radiation from axisymmetric sources will cause second harmonic, sum-

frequency and different frequency generation. The method of successive approximations will give us the expressions. Firstly, 

we are just considering the second harmonic generation by an acoustic beam radiated at a single angular frequency . We can 

assume a quasilinear solution of the form 

 

where  is the linear solution and  second order correction term over . The space-dependent term is now 

separated from the time dependence: 

 

 

where  are complex amplitudes, and  denotes the complex conjugate terms. Assuming the second harmonic component is 

absent in the source radiation at the transducer surface therefore  .Now the KZK equation will give two 

equation 

 

 

  

where , the attenuation coefficient at frequency , and  the wave number. With the proper Green's function, 

the solution will be: 

 

while 
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Injection of known source function , we can obtain the second harmonic component. For Gaussian source with 

characteristic radius with an ambient pressure , the source function can be expressed as: 

 

 

VII. EXPERIMENT 

We begin with a piston-type transducer as an acoustic source of a fundamental frequency of 3.5MHz and an effective diameter of 

0.5”. We have used an immersion-type piston transducer from Panametrics, USA, model number V382. A membrane hydrophone 

of an active sensor diameter of 0.2mm with a frequency response 1-30MHz (Precision acoustics, UK) has been used as a detector. 

The transducer was placed in a water tank of dimension filled with millipore water (Labat, 2000, Oleg, 2004). The membrane 

hydrophone was placed in the moving arm of an x-y-z computer-controlled position system.  

 

 

 
Water Tank 

Figure 1: Schematic diagram of the experimental arrangements 

VIII. EXPERIMENTAL RESULTS AND DISCUSSION 

 

Details study of the nonlinear KZK equation in the quasilinear approach has allowed us to be motivated for further resear and to 

do some relevant experiments. And we did so. As the system is nonlinear, a numerical study is also opened. We have traveled 

these three fields simultaneously and quite successfully. The nonlinear behavior of ultrasound radiated by a piston source in a 

medium is studied theoretically, experimentally, and numerically. The source differs from a plane wave. In the distance-

amplitude profile for different frequencies, it's pretty transparent that nonlinearity is a cumulative property of the medium. 

Because the initial amplitudes for harmonics are very small, but for fundamental, it's a trad value, far from zero. Experimentally 

we have calculated nonlinear parameters for millipore water (B/A=4.0098, Dissolved oxygen content= 9%) at room temperature. 

This measured value of the B/A parameter is also not beyond the common value. We have cal¬culated the axial pulse intensity 

integral (PII) for different frequencies. Now we have the freedom and opportunity to use this PII to contribute to the field of 

nonlinear acoustics. Spatial symmetry breaking has been studied in the transverse plane. If we look into the contour profile for 

different dB scales, symmetry has been broken. This phenomenon must be studied and verified from a theoretical point of view. 
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Figure 2: (a)Power spectrum at its 18th position. (b) Amplitude profile for different harmonics. (c) PII in axial direction for 

different harmonics 

The scope of future research are to study of nonlinear behavior of ultrasound in different bio-mimicking mediums, especially 

tissues, theoretical study of spatial and temporal symmetry breaking, numerical code development of model equation, tissue 

harmonic imaging, and theoretical and experimental study of shock wave propagation and application in medium. 
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